
PDP-10/X System Manual

David G. Conroy
dgc@apple.com, dgcx@mac.com

Wednesday, April 20, 2011

mailto:dgc@apple.com
mailto:dgc@apple.com
mailto:dgcx@mac.com
mailto:dgcx@mac.com

Introduction
This document describes the PDP-10/X, a new implementation of the venerable
PDP-10 architecture from Digital Equipment Corporation.

This document describes the PDP-10/X at a level appropriate for assembly language
programmers, and includes considerable information regarding low-level I/O device
programming. It is not a complete description of the PDP-10 architecture (the original
DEC manuals serve this function), although does describe implementation details in
places where the DEC manuals are unclear and/or there is a tradition of variation from
model to model. It is also not a complete description of some of the I/O components (the
manufacturer's data sheets and external standards serve this function), although it does
describe how the components are interconnected.

The PDP-10/X has three major blocks.

The first block is the processor (APR). The APR block is a new hardwired model of the
PDP-10 that most closely resembles a KA10 to which ITS paging has been added (for
example, it implements KA10-style floating point arithmetic, it has one block of ACs, the
MUUO and PI instructions are read from fixed locations in memory, and APR conditions
such as traps and page failures are reported using the PI system) but which is not
exactly compatible with the KA10 (for example, some of the quirks of the KA10ʼs
implementation that were fixed in all later models are fixed).

The second block is the pager and memory controller (PAG). The PAG block services all
memory-space reads and writes that appear on the system bus, translating the protocol
used on the system bus into the protocol used by the memories. The current version of
the PAG block implements 22-bit physical addressing, but the PDP-10/X only
implements 512KW of memory (five 512Kx8 15ns SRAM chips). The system bus
protocol allows the APR block to access memory using virtual addresses, which are
translated into physical addresses by the PAG block using a method appropriate for
running ITS; although it might seem more appropriate to perform this translation in the
APR block, putting it in the PAG block allows the in-memory structures used by address
translation to be accessed at memory speed instead of system bus speed.

The third block is the basic I/O system (BIO). The BIO block contains the I/O devices
needed by a basic, but complete, ITS system; a line frequency clock, an real-time clock
with a battery backup (to keep track of the date and time, even when the system is not
running), a console terminal interfaces, and a disk interface.

The line frequency clock does not actually run off the line (it runs off the crystal used to
generate the bit clock for the console terminal) so it always runs at 60 Hz, even if the
system is running off a battery.

- 1 -

The console terminal interface communicates with 2-wire RS-232 devices at 9600 bits
per second. The programming model is more like a traditional DEC interface than any
industry-standard interface, and is designed to simplify the modifications to the ITS
terminal driver (a previous PDP-10 design used an industry-standard 16450/16550
UART, and the modifications to the ITS terminal driver to handle such a UART were
harder to do than they first appeared to be; itʼs hard to make a 16450/16550 generate a
transmit-side PI on demand).

The disk interface that supports one or two ATA-2 disks. All disk transfers are performed
using programmed I/O (programmed I/O is almost as good as DMA in a system like the
PDP-10/X, since an ATA-2 disk contains a sector buffer, and provides data in a long
burst that would monopolize the memory and cause the APR to stop dead anyway), and
since disk DMA is not used, disk-like devices that are more-or-less compatible with the
ATA-2 standard but do not support DMA (like compact flash cards) can be used. The
disk interface does not resemble any traditional PDP-10 design.

The three major blocks (APR, PAG, BIO) are connected together by a the system bus (a
fourth block, the CLK block, generates all the clocks and resets on the system bus, and
orchestrates the loading of the FPGAs in the other three blocks). The system bus is a
simple synchronous bus that allows one device (the master) to read and write 36-bit
words in any other device (the slave). The APR block is the default master, but can
relinquish mastership of the system bus to another block on demand (the facility is not
currently used, since there are no I/O devices that do DMA). Reads and writes can be in
I/O space (in either the I/O condition space or the I/O data space; the PDP-10/X uses
old-style PDP-10 I/O instructions) or in memory space (using either physical or APR
virtual addresses).

The PDP-10/X runs a custom version of the Incompatible Timesharing System (ITS),
created and maintained at MIT between 1966 and 1990. The PDP-10/X runs ITS both
for its obvious hack value, and because a complex project like the PDP-10/X is best
tackled in stages, and ITS will run on a somewhat simpler system than either TOPS-10
or TOPS-20/TENEX. Some thought has been given to running TOPS-10 and/or
TOPS-20/TENEX, and the structure of the system is suitable for building a version of
the PDP-10/X capable of running a modified version of TOPS-10 and/or TOPS-20/
TENEX (the vast majority of the changes to the hardware are, of course, in the PAG
block).

- 2 -

APR
Instruction Set

Non-I/O instructions use the standard PDP-10 format.

FFFFFFFFF AAAA I XXXX YYYYYYYYYYYYYYYYYY

0
0

0
8

0
9

1
2

1
3

1
4

1
7

1
8

3
5

 I/O instructions, which have bits [00..02] = 111, use the old-style I/O instruction format.

777 DDDDDDD CCC I XXXX YYYYYYYYYYYYYYYYYY

0
0

0
2

0
3

0
9

1
0

1
2

1
3

1
4

1
7

1
8

3
5

The D field specifies the device and the C field specifies the I/O command in the
traditional way. The APR does not implement BLKI (C = 0) or BLKO (C = 2), and the
behavior of an instruction with a C field is 0 or 2 is undefined; the current
implementation treats BLKI as DATAI and treats BLKO as DATAO.

The APR implements the user-mode instruction set of the KA10 (including the
somewhat odd KA10 double-precision floating point), although it does not replicate the
quirks of the KA10 that were eliminated from all later models (for example, the fact that
adjustments to things like stack and byte pointers were done with fullword adds and
subtracts, and that a carry in the right half could ripple into the left half), nor does it
replicate the incorrect answers that were generated by some KA10 instructions when
presented with corner-case operands (usually 400000000000).

ITS was originally desiged for the KA10 (and itʼs predecessor, the 166), and although
ITS can (and was) made to work on newer models of the PDP-10, the executive mode
architecture of those newer models (process tables, page failures that are not reported
via a PI) is somewhat at odds with the design. For this reason the executive mode
architecture of the APR resembles that if the KA10, albeit one with paged memory
management; there is a single block of ACs, the MUUO and PI vectors are in fixed
locations in low memory, and traps and errors are reported using the PI system.

The APR blockʼs APR device is considerably different from that of the KA10; the set of
traps and errors is different, any trap or error can be assigned to one of two PI levels,
and there are some special features to simplify the context switch.

Flags

- 3 -

A
O
V

C
Y
0

C
Y
1

F
O
V

F
P
D

C
M

F
X
U

D
C
K

0
0

0
1

0
2

0
3

0
4

0
5

0
6

1
0

1
1

1
2

1
3

1
7

The APR has no public mode, so bit [00] is always the AOV flag, and bit [07] is always
0. The APR has no user I/O mode nor previous mode, so bit [06] is always 0. The APR
has no address failure inhibit, so bit [08] is always 0. The APR has a KA10-like APR trap
architecture, so bits [09..10] (the TRAP1 and TRAP2 flags) are always 0.

The FPD flag is only altered by ILDB and IDPB; instructions that can exit in the middle
and that cannot simply be restarted from the beginning (BLKI and BLKO would be on
this list if they were implemented, but they are not). All other instructions leave the FPD
flag alone. This is how all PDP-10 models actually worked, but this is not clearly
explained in the documentation.

A user mode program (CM = 1) can only set CM to 0 by taking an interrupt or executing
an MUUO.

JRST

The APR, like the KA10, treats the AC field of JRST as a set of bits, each of which
enables a special function.

[09]" If one or more priority interrupt levels are active dismiss the highest priority
level; do nothing if no priority interrupt levels are active

[10]" Halt.

[11]" Restore the flags from the left half of the word last read by the effective
address calculation, be it an indirect address word or an accumulator used
as an index register. If the effective address calculation does not read any
words (if the initial instruction word does not specify indirection or
indexing) the flags are restored from the left half of the instruction word. A
JRST with bit [11] set to 1 only loads CM if CM is set to 0; a program
running in user mode, with CM set to 1, cannot set CM to 0.

[12]" Set CM to 1 (user mode).

In executive mode (CM = 0) all special functions are allowed, although bit [12] is ignored
if both bit [11] and bit [12] are set to 1.

In user mode (CM = 1) only the special function enabled by bit [11] is allowed. A JRST
with any or all of bits [09], [10], or [12] set to 1 is treated as an MUUO.

- 4 -

The APR implements JRST with bit [11] set to 1 by keeping track of the left half of the
last word as a side effect of the evaluation of the effective address. Some
implementations (for example, the KS10), re-evaluated the effective address assuming
that PC-1 was the address of the JRST, which is incorrect in some cases (for example,
when the JRST is the target of an XCT).

MUUO and LUUO

The APR handles LUUO and MUUO instructions in almost the same way. A word
containing the LUUO/MUUO opcode in bits [00..08], the LUUO/MUUO accumulator field
in bits [09..12], zeros in bits [13..17], and the effective address in bits [18..35] is stored
in some location 000040, and then the instruction in some location 000041 is executed.

If the instruction is an MUUO then the instruction word is stored in location 000040 of
the executive mode address space, and the instruction from location 000041 of the
executive mode address space is read and executed in (temporarily forced) executive
mode; if the instruction in location 000041 is a JSR to the MUUO handler it will store
FL,,PC+1 in the usual way and the return address will be that of the instruction
immediately after the MUUO. If the instruction is a jump the APR will remain in
executive mode; the CM flag will be set to 0 (JSR and JSP, as always, also set the FPD
flag to 0).

If the instruction is an LUUO then the instruction word is stored in location 000040 of the
current mode address space, and the instruction from location 000041 of the current
mode address space is read and executed as an ordinary (non-interrupt) instruction in
the current mode; if the instruction in location 000041 is a JSR to the LUUO handler it
will store FL,,PC+1 in the usual way and the return address will be that of the instruction
immediately after the LUUO.

Note that an LUUO and an MUUO end up being identical in executive mode, although
their processing details are different.

If an MUUO is executed, and the instruction in location 000041 of the executive mode
virtual address space contains an LUUO, the APR will execute the LUUO in (temporarily
forced) executive mode, which will effectively make it an MUUO.

XCTR and XCTRI

Executive mode software needs to be able to access system call parameters in the user
mode address space. The APR makes this straightforward by allowing executive mode
software to modify the behavior of the XCT instruction so that a variety of useful subsets
of the memory references made by the executed instruction use the user mode address
space, even if the CM bit of the flags specifies executive mode.

XCTR/XCTRI C,E

- 5 -

2 5 62 5 62 5 62 5 62 5 62 5 62 5 62 5 62 5 6 CCCC I XXXX YYYYYYYYYYYYYYYYYY

0
0

0
8

0
9

1
2

1
3

1
4

1
7

1
8

3
5

The XCTR and XCTRI instructions execute the instruction in the memory location
specified by the effective address, and use the C field to hold a code that specifies
which of the memory references made by the executed instruction should use the use
the user mode address space.

Each memory reference made during the execution of an instruction belongs to one of
five memory reference classes.

IF" Instruction fetches.

E1" Index register references and memory references that are part of the
effective address calculation of instructions, including the index register in
the original instruction word.

D1" Memory references that are simple memory operands, including the
source operand of PUSH, the destination operand of POP, the destination
operand of BLT, and the (first) byte pointer word.

E2" Index register references and memory references that are part of the
effective address calculation of byte pointers, including the index register
reference in the (first) byte pointer word (this bit would also control source
effective address calculations and operands in EXTEND, but the APR
does not implement EXTEND.

D2" Memory references that are byte data, and the source operand in BLT
(this bit would also control destination effective address calculations and
operands in EXTEND, but the APR does not implement EXTEND).

These are the same meanings of E1, D1, E2, and D2 that are used by the Tenex/
TOPS-20 PXCT instruction, and inside the APR block itself.

Bits [10..12] of the C field encode several interesting selections of the E1, D1, E2, and
D2 bits. The encoding is as follows.

ITS Symbol C[10..12] IF E1 D1 E2 D2

- 0 - - - - -

XR, XW, XRW, XBW 1 - - X - -

XBR 2 - - - - X

- 6 -

ITS Symbol C[10..12] IF E1 D1 E2 D2

XBRW 3 - - X - X

XEA 4 - X - - -

XBYTE 5 - - X X X

- 6 - - - - -

- 7 - - - - -

Bit [09] of the C field specifies how errors on I/O and relocated memory cycles should
be reported. If this bit is 0 (XCTR) then errors are reported in the normal fashion; the
current instruction is flushed, the HE or SE flag in the APR device is set, and a PI is
generated if enabled. If this bit is 1 (XCTRI) then the current instruction is flushed and
the PC is incremented by 2 so that the instruction after the current instruction is skipped.
The status register in PAG is updated on soft errors in both cases; PI routines that use
XCTRI will need to save and restore the status register in PAG to avoid confusion.

The XCTR instruction encodes the C field in a way that is different from the encoding
used by the AC field of PXCT. It exploits the fact that ITS uses only a subset of the legal
PXCT AC field values in order to find space in the C field for the bit that is used to
distinguish between XCTR and XCTRI.

XCTRI skips on both hard and soft errors. XCTRI is normally used to read/write a
location in user space from executive mode, with the skip telling the executive mode
program that the read/write failed for some PAG-related reason. One might argue that
XCTRI should only skip on soft errors, so that hard errors are not lost. On the other
hand, if XCTRI skips on both hard and soft errors it can be used by the ROM program to
avoid a double hard error halt should an E or D command be aimed at a non-existent
location. The second design was selected, but itʼs not quite the right thing.

I/O cycles are treated as relocated cycles to allow the console program to use XCTRI to
avoid a double hard error halt if an E or D command is aimed at a device register that
does not exist. Normal software might find this feature useful for things like testing for
the existence of a device.

The XCTR instruction only performs its relocation function when executed in executive
mode. The C field is ignored in user mode.

Relocated references to locations 0-17 normally access locations 0-17 of the user mode
address space (the shadow locations, normally hidden by the accumulators), but the
PAG block has the ability to redirect these references to a special “AC block”. ITS uses
this feature to relocate references to these locations to one of the two “AC blocks” in a
jobʼs variables (UUOACS, AC0S-AC17S).

- 7 -

APR does not optimize the BLT case where the destination address is equal to the
source address + 1 (the "filling memory with a constant value" case). It does not,
therefore, need to do anything special to deal with the case where the BLT is the target
of an XCTR or XCTRI and the code is XBR or XBW.

Traps and Errors

The APR has six condition flags that capture various exceptional events.

The E1 and U1 flags capture trap-1 (arithmetic overflow) events. The E1 flag captures
trap-1 events that happen in executive mode, and the U1 flag captures trap-1 events
that happen in user mode.

The E2 and U2 flags capture trap-2 (push-down overflow) events. The E2 flag captures
trap-2 events that happen in executive mode, and the U2 flag captures trap-2 events
that happen in user mode.

The SE flag captures soft error events on any cycles that the APR runs on the system
bus. The SE flag becomes set if a device claims the cycle and completes it with a soft
error acknowledge and the SE flag is not already set. In theory any device can claim a
cycle and complete it with a soft error acknowledge, but the intention that the only
cycles that would be completed in this way would be memory cycles claimed by the
PAG device whose virtual addresses could not be successfully translated to physical
addresses (that is, page failures).

The HE flag captures hard error events on any cycles that the APR runs on the system
bus. The HE flag becomes set if no device claims the cycle, or some device claims the
cycle and completes it with a hard error acknowledge. The HE flag also becomes set if
some device claims the cycle and completes it with a soft error acknowledge and the
SE flag is already set (double soft error). The system bus distinguishes between
condition reads/writes and data reads/writes with an additional device address bit, so a
hard error is generated if software executes a DATAI/DATAO on a device that only
understands CONI/CONO/CONSZ/CONSO or executes a CONI/CONO/CONSZ/
CONSO on a device that only understands DATAI/DATAO.

Software can arrange (by setting the appropriate bits in the APR device) that any of
these six condition flags generate PI requests on one or both of two PI levels; having
two levels allows conditions that correspond to fatal events to use a high-priority PI level
and conditions that correspond to non-fatal events to use a low-priority PI level.

The APR guarantees that if an instruction sets a flag, the flag is configured to generate
a PI, and the PI can be recognized, then the PI will be recognized before the next
instruction begins execution. Traps and errors are reported using interrupts, but from a
practical point of view, they can be treated as precise. The next instruction is not read
and ignored (even though this would have simplified the implementation) so software

- 8 -

does not need to handle the troublesome situation where an instruction gets a trap, the
read of the next instruction (which is is ignored) gets another error, and both the trap
and the (bogus) error get reported.

The trap flags (U1, U2, E1, E2) are set when the instruction that caused the trap
completes, so if one of these flags causes a PI, the PC saved by the PI will point to the
instruction after the instruction that set the trap flag. The error flags (HE, SE) are set
when the instruction that caused the error is abandoned, so if one of these flags causes
a PI, the PC saved by the PI will point to the instruction that set the error flag, and when
the PI is dismissed the instruction that set the error flag will be re-executed.

The PI level assignments for trap and/or error handlers must be chosen so that the PI
routines run at a higher priority than any code that might actually cause the events. At
best, a trap will stick around until the JEN, when the trap PI handler will run, and
promptly get very confused, since the saved PC has nothing to do with the PC at the
time of the trap. At worst, an error will cause the APR re-execute the failing instruction,
get another error, and get a double-error halt.

TOPS10 6.03 runs the APRʼs PI handler at high priority. There are comments in the
code that say “happens only if user is enabled when monitor causes condition'” and
“store offending PC so we can fix code'”, which suggests that user jobs that enabled
trapping were rare enough that occasional the occasional trap in the monitor was not a
big deal (this code is just after the label APRER0 in CLOCK1.MAC). TENEX 134 does
essentially the same thing. ITS does the same sort of thing as well (look at the code
after the labels AROV and/or ARFOV) but it runs the APR PI handler at low priority
(CLKCHN = 7) so it seems that traps in PI handlers could confuse things.

Priority Interrupts

A priority interrupt (PI) request on a level can be generated by hardware (the request
signal from the APR-internal APR device and/or the request signal on the system bus
associated with the level is true) or by software (the software request signal associated
with the level is asserted). The APR can recognize a PI request on a level if a PI is not
already in progress on the level or on any higher priority level, the PI system is enabled,
and the PI level is enabled.

The KL10, and the KS10 with microcode revisions before revision 47, recognized a
software interrupt on a level even if the level was not enabled. The PDP-10/X APR
requires that the level be enabled, making it compatible with the KC10, and with the
KS10 with microcode revision of 47 or later. ITS is not sensitive to this difference, since
the trouble it caused was resolved long ago, and requiring the level to be enabled is the
more modern interpretation.

The APR checks for PI requests just before it begins reading an initial instruction word,
just before it begins reading the target instruction word of an XCT, just before it begins
writing the F/A/EA word into location 000040 on a UUO, and just before it begins

- 9 -

reading any indirect addressing word (including any byte pointer word, which can be
considered to be a kind of indirect addressing word). The APR also checks for PI
requests just before it loops back to move an additional word on a BLT. These checks
ensure that is possible for a PI to break out of a within-an-instruction loop.

If the APR finds one or more PI requests it picks the one having the highest priority, and
begins recognizing that PI request. The APR recognizes a PI request on level N by
setting the in-progress flag for level N, reading an instruction from executive mode
location 000040+2*N, and “executing” the instruction in executive mode.

The interrupt instruction is not really “executed” by the APR. The only instruction that is
legal as an interrupt instruction is JSR (264000,,EA), and it is easier to “execute” the
JSR using a dedicated logic sequence (all it needs to do is write FL,,PC into executive
mode location EA, update FL in the manner of a JSR, and write EA+1 into PC).

Restricting the set of legal interrupt instructions to simplify their PI handling was
commonplace in PDP-10 designs; the KS10, for example, only allowed JSR and XPCW
as interrupt instructions.

If the APR begins recognizing a PI request, but cannot complete recognizing the PI
request (because it cannot read the instruction from executive mode location
000040+2*N, or the instruction is not of the form 264000,,EA, or it cannot write FL,,PC
to executive mode location EA) the APR halts.

HALTS

The PDP-10 architecture allows a APR to halt; when halted a APR does not execute
instructions until it is restarted by some explicit command, either from a switch on a front
panel, or by a command executed by a front-end processor, depending on the
implementation.

The PDP-10/X APR supports halt, but barely. When the APR halts it stops executing
instructions, but there is no way to restart it other than resetting the entire system. This
is acceptable because the APR is only halted in the most desperate of situations; in
slightly less desperate situations control gets passed to EDDT, which supports the same
kind of low-level debugging as a front panel, but with a nicer interface.

A normal halt happens when a HALT instruction is executed.

An abnormal halt happens when the APR gets into a state in which forward progress is
impossible. Currently forward progress is considered to be impossible if a hard error is
detected and the HE flag is set (double hard error), or if the APR begins but cannot
complete a PI entry sequence (either because of a hard or soft error on any of the
memory references associated with the PI entry sequence, or because the interrupt
instruction is not a JSR instruction).

- 10 -

There is no front-panel switch to force the APR to halt; such a switch would not be
terribly useful. There is a front-panel switch, however, to generate an level 1 PI request;
no software runs at this high-priority PI level, so the PI request generated by this switch
will almost always be recognized, and can pass control to EDDT.

One idea is to have the APR try and read and discard the instruction pointed to by PC
before it halts, the idea being that this will allow a front panel, snooping the system bus,
to capture the PC and the instruction word.

I/O Instructions

The PDP-10/X APR uses I/O instructions with D[03..05] = 000 act upon I/O devices,
located internal to the APR, that deal with traps and PI requests.

CONI, APR,E

7 0 0 2 47 0 0 2 47 0 0 2 47 0 0 2 47 0 0 2 47 0 0 2 47 0 0 2 47 0 0 2 47 0 0 2 47 0 0 2 47 0 0 2 47 0 0 2 47 0 0 2 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read the status of the APR into location E. The word read has the following format.

E
H
E

E
S
E

E
E
2

E
E
1

E
U
2

E
U
1

E
I
A

E
I
A

E
I
A

T
H
E

T
S
E

T
E
2

T
E
1

T
U
2

T
U
1

T
I
A

T
I
A

T
I
A

F
H
E

F
S
E

F
E
2

F
E
1

F
U
2

F
U
1

E
I
R

T
I
R

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
8

0
9

1
0

1
1

1
2

1
3

1
4

1
5

1
7

1
8

0
0

0
0

0
0

0
0

0
0

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
5

EHE" Error interrupt enable for the hard error flag.

ESE" Error interrupt enable for the soft error flag.

EE2" Error interrupt enable for the executive mode trap-2 flag.

EE1" Error interrupt enable for the executive mode trap-1 flag.

EU2" Error interrupt enable for the user mode trap-2 flag.

EU1" Error interrupt enable for the user mode trap-1 flag.

EIA" The PI assignment for the error interrupt. If EIA is 0 the error interrupt is
not connected to the PI system.

THE" Trap interrupt enable for the hard error flag.

TSE" Trap interrupt enable for the soft error flag.

- 11 -

TE2" Trap interrupt enable for the executive mode trap-2 flag.

TE1" Trap interrupt enable for the executive mode trap-1 flag.

TU2" Trap interrupt enable for the user mode trap-2 flag.

TU1" Trap interrupt enable for the user mode trap-1 flag.

TIA " The PI assignment for the trap interrupt. If EIA is 0 the trap interrupt is not
connected to the PI system.

FHE" The hard error flag.

FSE" The soft error flag.

FE2" The executive mode trap-2 flag.

FE1" The executive mode trap-1 flag.

FU2" The user mode trap-2 flag.

FU1" The user mode trap-1 flag.

EIR" Indicates that an error interrupt is pending, even if the error interrupt is not
connected to the PI system because EIA is 0.

TIR" Indicates that a trap interrupt is pending, even if the trap interrupt is not
connected to the PI system because TIA is 0.

CONO APR,E

7 0 0 2 07 0 0 2 07 0 0 2 07 0 0 2 07 0 0 2 07 0 0 2 07 0 0 2 07 0 0 2 07 0 0 2 07 0 0 2 07 0 0 2 07 0 0 2 07 0 0 2 0 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Perform the function specified by the effective conditions E (an immediate quantity).

S
S
E

R
I
O

C
S
E

S
F

C
F

L
E

L
T

M
H
E

M
S
E

M
E
2

M
E
1

M
U
2

M
U
1

I
A
I
A
I
A

0
0

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
5

SSE" Set the soft error flag.

- 12 -

RIO" Reset the I/O system. This does not effect anything associated with device
0, which means it does not reset anything in the APR or the PAG device.

CSE" Clear the soft error flag.

SF" Set the flags corresponding to the bits that are set in the mask (bits
[25..30]).

CF" Clear the flags corresponding to the bits that are set in the mask (bits
[25..30]).

LE" Load the error interrupt enables from the mask (bits [25..30]) and load the
error interrupt PI assignment from the IA field (bits[33..35]).

LT" Load the trap interrupt enables from the mask (bits [25..30]) and load the
trap interrupt PI assignment from the IA field (bits[33..35]).

MHE" Mask bit for hard error enables and/or flags.

MSE" Mask bit for soft error enables and/or flags.

ME2" Mask bit for executive mode trap-2 enables and/or flags.

ME1" Mask bit for executive mode trap-1 enables and/or flags.

MU2" Mask bit for user mode trap-2 enables and/or flags.

MU1" Mask bit for user mode trap-1 enables and/or flags.

IA" The value that can be loaded into the PI assignments for the error and/or
trap interrupts.

The effect of a CONO APR that attempts to both set and clear a flag is undefined; the
current design gives setting a flag priority over clearing a flag.

The SE bit is treated specially (that is, there is a SSE bit and a CSE bit) to allow a single
CONO APR (the one in the context switch) to both load the trap enables for a job and
set the SE flag should a high-priority PI routine wish to cause a fake soft error because
an XCTRI detected an error.

CONSZ APR,E

7 0 0 3 07 0 0 3 07 0 0 3 07 0 0 3 07 0 0 3 07 0 0 3 07 0 0 3 07 0 0 3 07 0 0 3 07 0 0 3 07 0 0 3 07 0 0 3 07 0 0 3 0 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

- 13 -

Read the status of the APR (a word with the same format as described for CONI), mask
it with the effective address E (an immediate quantity), and skip if the result is zero.

CONSO APR,E

7 0 0 3 47 0 0 3 47 0 0 3 47 0 0 3 47 0 0 3 47 0 0 3 47 0 0 3 47 0 0 3 47 0 0 3 47 0 0 3 47 0 0 3 47 0 0 3 47 0 0 3 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read the status of the APR (a word with the same format as described for CONI), mask
it with the effective address E (an immediate quantity), and skip if the result is non-zero.

CONI PI,E

7 0 0 6 47 0 0 6 47 0 0 6 47 0 0 6 47 0 0 6 47 0 0 6 47 0 0 6 47 0 0 6 47 0 0 6 47 0 0 6 47 0 0 6 47 0 0 6 47 0 0 6 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read the status of the PI system into location E. The word read has the following
format.

S
R
1

S
R
2

S
R
3

S
R
4

S
R
5

S
R
6

S
R
7

I
P
1

I
P
2

I
P
3

I
P
4

I
P
5

I
P
6

I
P
7

G
E

L
E
1

L
E
2

L
E
3

L
E
4

L
E
5

L
E
6

L
E
7

0
0

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

2
0

0
0

0
0

0
0

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
5

SR1-7" Software request flags for levels 1-7.

IP1-7" In-progress flags for levels 1-7. The in-progress flag for level n is set when
an interrupt request is accepted on level n, and the highest priority (lowest
n) in-progress flag is reset by JRST 10 or JRST 12.

GE" The global enable flag.

LE1-7" Enable flags for levels 1-7.

At reset all of the software request flags, all of the in-progress flags, the global enable
flag, and all of the enable flags are set to 0.

An SRn bit makes a request on a level even if the LEn bit for the level is clear; only GE
needs to be set. This is compatible with the last models of the PDP-10 running the
newest microcode, but is incompatible with the KA10, which required that the LEn bit be
set. ITS always sets the LEn bits.

- 14 -

An SRn bit remains set until it is cleared by software. This is compatible with all models
of the PDP-10 except the KA10, which cleared SRn upon delivery of a PI at level n. ITS
conditionalizes the explicit clearing of SRn bits on a model-by-model basis.

CONO PI,E

7 0 0 6 07 0 0 6 07 0 0 6 07 0 0 6 07 0 0 6 07 0 0 6 07 0 0 6 07 0 0 6 07 0 0 6 07 0 0 6 07 0 0 6 07 0 0 6 07 0 0 6 0 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Perform the function specified by the effective conditions E (an immediate quantity).

C
S
R

R
P
I

S
S
R

S
L
E

C
L
E

C
G
E

S
G
E

L
1

L
2

L
3

L
4

L
5

L
6

L
7

0
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

CSR" Clear the software request(s) corresponding to the bit(s) that are set in the
mask (bits [29..35]).

RPI" Reset the PI system. All of the software request bits, all of the in-progress
bits, the global enable bit, and all of the level enable bits are cleared.

SSR" Set the software request(s) corresponding to the bit(s) that are set in the
mask (bits [29..35]).

SLE" Set the level enable bit(s) corresponding to the bit(s) that are set in the
mask (bits [29..35]).

CLE" Clear the level enable bit(s) corresponding to the bit(s) that are set in the
mask (bits [29..35]).

CGE" Clear the global enable.

SGE" Set the global enable.

L1-7" Mask bits for levels 1-7.

The effect of a CONO PI that attemts to both set and clear a flag is undefined; the
current design gives setting a flag priority over clearing a flag.

CONSZ PI,E

7 0 0 7 07 0 0 7 07 0 0 7 07 0 0 7 07 0 0 7 07 0 0 7 07 0 0 7 07 0 0 7 07 0 0 7 07 0 0 7 07 0 0 7 07 0 0 7 07 0 0 7 0 I XXXX YYYYYYYYYYYYYYYYYY

- 15 -

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read the status of the PI system (a word with the same format as described in CONI
PI), mask it with the effective address E (an immediate quantity), and skip if the result is
zero.

CONSO PI,E

7 0 0 7 47 0 0 7 47 0 0 7 47 0 0 7 47 0 0 7 47 0 0 7 47 0 0 7 47 0 0 7 47 0 0 7 47 0 0 7 47 0 0 7 47 0 0 7 47 0 0 7 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read the status of the PI system (a word with the same format as described in CONI
PI), mask it with the effective address E (an immediate quantity), and skip if the result is
non-zero.

- 16 -

PAG
The PAG block is the pager and the memory controller. It responds to all memory cycles
on the system bus, translating virtual memory addresses into physical memory
addresses in a way that is appropriate for ITS if necessary.

The Paging Process

Programs generate 18-bit addresses.

When paging is disabled programs can only reference some (usually the lowest)
256KW of the 4096KW physical address space.

When paging is enabled programs can reference up to 256K words of virtual address
space, consisting of up to 256 1K word virtual pages, each mapped to any of the 4096
1K word physical pages in the 4096K word physical address space.

The mapping of virtual pages to physical pages is performed by page tables located in
physical memory. Each page table is 64 words long, and contains mappings for 128
virtual pages. There are four page tables; two page tables map the low and high 128K
words of the executive mode virtual address space, and two page tables map the low
and high 128K words of the user mode virtual address space.

The page tables are pointed to by four page table base registers. Page tables are
aligned on 64-word boundaries in the physical address space; this causes no trouble for
ITS (which stores page tables in the front of the user variable block, which is easily
aligned, since on the KL10/KS10 it also served as the UPT, which had alignment
requirements), and eliminates the need for an adder in a critical path.

A page table word has the following format.

EVEN PAGE (A[10]=0)EVEN PAGE (A[10]=0)EVEN PAGE (A[10]=0)EVEN PAGE (A[10]=0)EVEN PAGE (A[10]=0)EVEN PAGE (A[10]=0)EVEN PAGE (A[10]=0)EVEN PAGE (A[10]=0)EVEN PAGE (A[10]=0)EVEN PAGE (A[10]=0)EVEN PAGE (A[10]=0)EVEN PAGE (A[10]=0)EVEN PAGE (A[10]=0)EVEN PAGE (A[10]=0)EVEN PAGE (A[10]=0)EVEN PAGE (A[10]=0)EVEN PAGE (A[10]=0)EVEN PAGE (A[10]=0) ODD PAGE (A[10]=1)ODD PAGE (A[10]=1)ODD PAGE (A[10]=1)ODD PAGE (A[10]=1)ODD PAGE (A[10]=1)ODD PAGE (A[10]=1)ODD PAGE (A[10]=1)ODD PAGE (A[10]=1)ODD PAGE (A[10]=1)ODD PAGE (A[10]=1)ODD PAGE (A[10]=1)ODD PAGE (A[10]=1)ODD PAGE (A[10]=1)ODD PAGE (A[10]=1)ODD PAGE (A[10]=1)ODD PAGE (A[10]=1)ODD PAGE (A[10]=1)ODD PAGE (A[10]=1)

PP A PFNPFNPFNPFNPFNPFNPFNPFNPFNPFNPFNPFN PP A PFNPFNPFNPFNPFNPFNPFNPFNPFNPFNPFNPFN

0
0

0
1

0
2

0
3

0
4

0
5

0
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

3
5

The P field is the protection code. No access is allowed if the protection code is 0. Read
access is allowed if the protection code is 1, 2, or 3, Write access is allowed if the
protection code is 3. Read-only pages normally have protection code 1; protection code
2, usually called “read/write first'”, is used to trap the first write to pages that would
normally have protection code 3.

The A field is the age flag. It does not participate in translation or protection, but it is set
to 0 when the page table entry is used by the pager to map an address (when the pager

- 17 -

sets the A bit to 0 is disturbs no other bits in the page table entry, including bits [02..03]
and bit [05]).

The PPN field is the physical page number. The PPN field is 12 bits wide, so there can
be 4096 physical pages, which is enough to address up to 4096KW of memory.

PAG contains two 256-entry RAMS which cache the most recently fetched page table
entry for each of the virtual pages in each of the address spaces. The entry in the RAM
corresponding to the virtual page is loaded any time a page table entry is fetched from a
page table. When a virtual to physical translation is needed, PAG first looks in the RAM
to see if it contains a page table entry that can satisfy the translation. If it does then the
memory access proceeds. If it does not (either because the entry was not valid, or
because the protection check failed) the page table lookup process begins.

Software can invalidate individual entries and/or all 256 entries in either or both of the
page table entry cache RAMS using the DATAO PAG+1 instruction. In addition, any time
a page table base register is updated using a DATAO PAG+4, DATAO PAG+5, DATAO
PAG+6, or DATAO PAG+7 instruction all 256 entries in the RAM associated with the
virtual address space mapped by the updated page table base are invalidated.

Note that because the page table lookup process is begun anytime the page table entry
cache cannot satisfy the request, it is not necessary to invalidate an entry in the page
table entry cache if a page table entry is changed from invalid to valid, or from a state
which does not allow writing into a state that does allow writing. It is only necessary to
invalidate an entry in the page table entry cache when a page table entry is switches to
a more restrictive protection code.

Bulk invalidations of the page table entry cache are performed in a way that minimizes
the impact on the system. When a page table entry cache RAM needs to be bulk
invalidated, it is placed into the “invalidating'” state. In this state the cache is invalidating
one entry per cycle, so the whole RAM is invalidated in 256 cycles. If software makes a
request that requires the use of the RAM while it is invalidating the request is processed
via a full page table lookup, and the page table entry is not written into the RAM.
Instructions continue to be executed during the invalidation, but memory operates at
about half speed. Note also that accesses made to the executive mode address space
are not stalled while the user mode page table entry cache RAM is invalidating, so when
the operating system switches jobs, some of the invalidation time is overlapped with the
executive mode code that is restoring the state of the job.

APR does not check write access for the memory operand of an instruction that both
reads and writes memory until the write actually happens; a DIVM whose memory
operand is 0 and in a location that cannot be written will get a “no divide'” trap rather
than an error from PAG on the failed write.

When PAG detects that a cycle generated by the currently executing instruction cannot
be completed it captures some information about the cycle in a register within PAG, and

- 18 -

completes the read or write with a soft error acknowledge. The APR abandons the
currently executing instruction without updating any state (so the PC is left pointing at
the instruction that could not be completed). The soft error acknowledge normally sets
the SE flag and generates a PI. If a PI is not generated the instruction is re-executed,
which may result in a double soft error (which normally sets the HE flag and generates a
PI) or a double hard error (which generates a halt).

I/O Instructions

The PAG block appears to be eight I/O devices starting at device address 0.10; in all of
the following descriptions the symbol PAG has value 010.

CONI, PAG+0,E

7 0 4 2 47 0 4 2 47 0 4 2 47 0 4 2 47 0 4 2 47 0 4 2 47 0 4 2 47 0 4 2 47 0 4 2 47 0 4 2 47 0 4 2 47 0 4 2 47 0 4 2 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read the status of PAG into location E. The word read has the following format.

H
M

P
E

R
E

0
0

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
5

HM " Highest moby. Determines which 256KW region of the physical address
space referenced by reads/writes when the PE bit is 0. If the HM bit is 1
then the highest 256KW is referenced. If the HM bit is 0 then the lowest
256KW is referenced.

PE" Paging enable. If the PE bit is 1 reads/writes reference (up to) 256KW of
virtual address space directed to (up to) 256 1KW pages located
anywhere in the 4096KW (512KW) physical address space. If the PE bit is
0 reads/writes reference 256KW of virtual address space redirected to the
256KW of the physical address space specified by the HM bit.

RE" ROM enable. If the RE bit is 1 reads from virtual locations 400000-777777
reference 128 copies of the 1KW ROM, and writes to virtual locations
400000-777777 are ignored. If the RE bit is 0 virtual locations
400000-777777 receive no special treatment.

The normal “paging off” configuration has HM = 0, PE = 0, and RE = 0. The normal
“paging on” configuration has PE = 1, and RE = 0. The console and bootstrapping ROM
has HM = 1, PE = 0, and RE = 1/0.

- 19 -

Power-up reset sets HM to 1, PE to 0, and RE to 1. A software-generated I/O reset
(caused by CONO APR, 200000) does not effect HM, PE, or RE.

The layout of the bits in this register anticipates adding a PAG interrupt at some point in
the future; bit [31] would be the IE flag, bit [32] would be the IR flag, and bits [33..35]
would be the PI level assignment.

CONO, PAG+0,E

7 0 4 2 07 0 4 2 07 0 4 2 07 0 4 2 07 0 4 2 07 0 4 2 07 0 4 2 07 0 4 2 07 0 4 2 07 0 4 2 07 0 4 2 07 0 4 2 07 0 4 2 0 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Set up the PAG device from the effective conditions E as shown.

H
M

P
E

R
E

0
0

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
5

HM " Highest moby.

PE" Paging enable.

RE" ROM enable.

The layout of the bits in this register anticipates adding a PAG interrupt at some point in
the future; bit [31] would be the IE flag, bit [32] would be unused, and bits [33..35] would
be the PI level assignment.

CONSZ PAG+0,E

7 0 4 3 07 0 4 3 07 0 4 3 07 0 4 3 07 0 4 3 07 0 4 3 07 0 4 3 07 0 4 3 07 0 4 3 07 0 4 3 07 0 4 3 07 0 4 3 07 0 4 3 0 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read the status of PAG (a word with the same format as described in CONI PAG), mask
it with the effective address E (an immediate quantity), and skip if the result is zero.

- 20 -

CONSO PAG+0,E

7 0 4 3 47 0 4 3 47 0 4 3 47 0 4 3 47 0 4 3 47 0 4 3 47 0 4 3 47 0 4 3 47 0 4 3 47 0 4 3 47 0 4 3 47 0 4 3 47 0 4 3 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read the status of PAG (a word with the same format as described in CONI PAG), mask
it with the effective address E (an immediate quantity), and skip if the result is non-zero.

DATAI PAG+0,E

7 0 4 0 47 0 4 0 47 0 4 0 47 0 4 0 47 0 4 0 47 0 4 0 47 0 4 0 47 0 4 0 47 0 4 0 47 0 4 0 47 0 4 0 47 0 4 0 47 0 4 0 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

DATAO PAG+0,E

7 0 4 1 47 0 4 1 47 0 4 1 47 0 4 1 47 0 4 1 47 0 4 1 47 0 4 1 47 0 4 1 47 0 4 1 47 0 4 1 47 0 4 1 47 0 4 1 47 0 4 1 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read/write the register that describes the most recent soft error encountered by PAG.
The register has the following format.

W
R

U
M

PP V
A
V
A
V
A
V
A
V
A
V
A
V
A
V
A
V
A
V
A
V
A
V
A
V
A
V
A
V
A
V
A
V
A
V
A

0
0

0
1

0
2

0
3

0
4

0
5

0
6

1
7

1
8

3
5

WR" Set to 1 if the error happened on a write, and set to 0 if the error happened on
a read.

UM " Set to 1 if the error happened on a user mode read/write, and set to 0 if the
error happened on an executive mode read/write. Executive mode programs
can generate traps with UM = 1 with XCTR or XCTRI.

P" The P field of the page table entry that was accessed and determined that the
read/write should complete with a soft error.

VA" The virtual address of the read/write that generated the error.

- 21 -

Bits [06..17] are unused, so there are enough bits for a full 30-bit VA in some future
extended addressing design, even though it is unlikely that any such design would be
done, since ITS does not understand extended addressing.

This register is updated on any error generated by PAG, even errors that are generated
by an instruction under an XCTRI that causes the APR to skip instead of generating
APR PI (it needs to work this way to allow the code at label INTPFL to be written). This
register is not updated on bus errors, even if the bus error was generated by PAG;
doing so would be useless because there are APR-detected bus errors.

This register is read/write to allow a high-priority PI routine that uses XCTRI instructions
to save and restore this register, since ITS processes page failures in a low-priority
interrupt handler (APRCHN = 7). This is actually how ITS works when using a Systems
Concepts paging box, but it is not obvious that this is the case (the save and restore is a
side effect of SPM and LPMR instructions executed by the PI routine).

Power-up reset sets UM to 0, WR to 0, P to 0, and VA to 0. A software-generated I/O
reset (caused by CONO APR, 200000) does not effect UM, WR, P, or VA.

DATAO PAG+1,E

7 0 4 5 47 0 4 5 47 0 4 5 47 0 4 5 47 0 4 5 47 0 4 5 47 0 4 5 47 0 4 5 47 0 4 5 47 0 4 5 47 0 4 5 47 0 4 5 47 0 4 5 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Invalidate entries in PAGʼs page table entry cache specified by the contents of location
E. The word read from location E has the following format.

E
I
E

U
I
E

I
S

I
A
I
A
I
A
I
A
I
A
I
A
I
A
I
A
I
A
I
A
I
A
I
A
I
A
I
A
I
A
I
A
I
A
I
A

0
0

0
1

0
2

0
3

0
4

0
5

0
6

1
7

1
8

3
5

EIE" Set to 1 to enable invalidation of the executive mode virtual address space.

UIE" Set to 1 to enable invalidation of the user mode virtual address space.

IS" Set to 1 if this is an invalidate single (only the page table entry cache location
that maps the virtual address specified by the IA field) and set to 0 if this is an
invalidate all (all page table entry cache locations).

IA" The address being invalidated if the IS field is set to 1.

The ITS CLRPGM macro (flush the entire page table entry cache) can be implemented
with DATAO PAG+1,[600000,,000000].

- 22 -

The standard CLRPT E instruction (flush the single page table entry cache location
associated with address E in both address spaces) can be implemented with DATAO
PAG+1,[700000,,E].

DATAI PAG+2,E

7 0 5 0 47 0 5 0 47 0 5 0 47 0 5 0 47 0 5 0 47 0 5 0 47 0 5 0 47 0 5 0 47 0 5 0 47 0 5 0 47 0 5 0 47 0 5 0 47 0 5 0 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

DATAO PAG+2,E

7 0 5 1 47 0 5 1 47 0 5 1 47 0 5 1 47 0 5 1 47 0 5 1 47 0 5 1 47 0 5 1 47 0 5 1 47 0 5 1 47 0 5 1 47 0 5 1 47 0 5 1 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read/write the AC-block enable and the AC-block base register (the base register that
ITS doesnʼt ever really name, but which the Systems Concepts ITS pager stored in
word 7 of the 8-word LPMR/SPM block). The word has the following format.

A
E

A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B

0
0

0
1

1
3

1
4

3
1

3
2

3
5

AE" The AC-block enable. If the AE bit is 1 reads/writes to virtual locations 0-17
are mapped to the 16-word block in physical memory whose address is
specified by the AB field. If the AE bit is 0 reads/writes to virtual locations 0-17
are mapped in the standard way. Reads/writes to virtual locations 0-17 can
only be generated using XCTR and XCTRI.

AB" The AC-block base. Set to bits [14..31] of the physical address of the 16-word
AC block in memory. Bits [32..35] are unused, which means the 16-word AC
block in memory must be aligned on a 16-word boundary.

The 16-word alignment restriction saves an adder in the critical path to getting a
physical address to the memory, and causes no trouble, since the only values ITS ever
puts in this register are fixed offsets from the start of the job variables (UUOACS and
AC0S), and it's easy to align the job variables.

Power-up reset sets AE to 0 and AB to 0. A software-generated I/O reset (caused by
CONO APR, 200000) does not effect AE or AB.

- 23 -

DATAI PAG+3,E

7 0 5 4 47 0 5 4 47 0 5 4 47 0 5 4 47 0 5 4 47 0 5 4 47 0 5 4 47 0 5 4 47 0 5 4 47 0 5 4 47 0 5 4 47 0 5 4 47 0 5 4 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

DATAO PAG+3,E

7 0 5 5 47 0 5 5 47 0 5 5 47 0 5 5 47 0 5 5 47 0 5 5 47 0 5 5 47 0 5 5 47 0 5 5 47 0 5 5 47 0 5 5 47 0 5 5 47 0 5 5 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read/write the quantum timer, which is an 18-bit timer that increments every 4
microseconds (that is, by the 16 MHz system bus clock divided by 64) any time the APR
is running at level 0 (that is, no PI is active, as indicated by the BPIA_L signal on the
system bus). Nothing special happens when the quantum timer overflows (the quantum
timer in the Systems Concepts ITS paging box for the KA10 generated an interrupt for
this condition, but ITS did not use it, and actually went to considerable trouble to ensure
that the interrupt did no happen).

The quantum timer in the Systems Concepts paging box was 19 bits wide and
incremented at 1 MHz, but this size/rate was never really used; any time the value in the
quantum timer was read it was immediately shifted right by 2 bits. The quantum timer in
the PAG device increments at the desired rate, and as a side effect of doing so, is
actually 1 bit wider than the one in the Systems Concepts paging box.

The word written/read has the following format.

T
M
R

T
M
R

T
M
R

T
M
R

T
M
R

T
M
R

T
M
R

T
M
R

T
M
R

T
M
R

T
M
R

T
M
R

T
M
R

T
M
R

T
M
R

T
M
R

T
M
R

T
M
R

0
0

1
7

1
8

3
5

Power-up reset sets TMR to 0. A software-generated I/O reset (caused by CONO APR,
200000) does not effect TMR.

The simulator does not increment the quantum timer by 1 every 4 microseconds, but by
2500 every 10 milliseconds.

- 24 -

DATAI PAG+4,E

7 0 6 0 47 0 6 0 47 0 6 0 47 0 6 0 47 0 6 0 47 0 6 0 47 0 6 0 47 0 6 0 47 0 6 0 47 0 6 0 47 0 6 0 47 0 6 0 47 0 6 0 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

DATAO PAG+4,E

7 0 6 1 47 0 6 1 47 0 6 1 47 0 6 1 47 0 6 1 47 0 6 1 47 0 6 1 47 0 6 1 47 0 6 1 47 0 6 1 47 0 6 1 47 0 6 1 47 0 6 1 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read/write the executive mode low segment base register (the base register ITS
normally calls DBR4). The word written/read has the following format.

E
L
B

E
L
B

E
L
B

E
L
B

E
L
B

E
L
B

E
L
B

E
L
B

E
L
B

E
L
B

E
L
B

E
L
B

E
L
B

E
L
B

E
L
B

E
L
B

0
0

1
3

1
4

2
9

3
0

3
5

Note that bits [30..35] are unused, which means the 64-word page table must be 64-
word aligned.

The 64-word alignment restriction saves an adder in the critical path to getting a
physical address to the memory, and causes no trouble, since the only value ITS ever
puts in this register is a constant.

All 256 entries in the executive mode page table entry cache are invalidated any time
the executive mode low segment base register is written.

Power-up reset sets ELB to 0. A software-generated I/O reset (caused by CONO APR,
200000) does not effect ELB.

DATAI PAG+5,E

7 0 6 4 47 0 6 4 47 0 6 4 47 0 6 4 47 0 6 4 47 0 6 4 47 0 6 4 47 0 6 4 47 0 6 4 47 0 6 4 47 0 6 4 47 0 6 4 47 0 6 4 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

DATAO PAG+5,E

- 25 -

7 0 6 5 47 0 6 5 47 0 6 5 47 0 6 5 47 0 6 5 47 0 6 5 47 0 6 5 47 0 6 5 47 0 6 5 47 0 6 5 47 0 6 5 47 0 6 5 47 0 6 5 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read/write the executive mode high segment base register (the base register ITS
normally calls DBR3). The word written/read has the following format.

E
H
B

E
H
B

E
H
B

E
H
B

E
H
B

E
H
B

E
H
B

E
H
B

E
H
B

E
H
B

E
H
B

E
H
B

E
H
B

E
H
B

E
H
B

E
H
B

0
0

1
3

1
4

2
9

3
0

3
5

Note that bits [30..35] are unused, which means the 64-word page table must be 64-
word aligned.

The 64-word alignment restriction saves an adder in the critical path to getting a
physical address to the memory, and causes no trouble, since the only value ITS ever
puts in this register is a constant.

All 256 entries in the executive mode page table entry cache are invalidated any time
the user mode high segment base register is written.

Power-up reset sets EHB to 0. A software-generated I/O reset (caused by CONO APR,
200000) does not effect EHB.

DATAI PAG+6,E

7 0 7 0 47 0 7 0 47 0 7 0 47 0 7 0 47 0 7 0 47 0 7 0 47 0 7 0 47 0 7 0 47 0 7 0 47 0 7 0 47 0 7 0 47 0 7 0 47 0 7 0 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

DATAO PAG+6,E

7 0 7 1 47 0 7 1 47 0 7 1 47 0 7 1 47 0 7 1 47 0 7 1 47 0 7 1 47 0 7 1 47 0 7 1 47 0 7 1 47 0 7 1 47 0 7 1 47 0 7 1 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read/write the user mode low segment base register (the base register ITS normally
calls DBR1). The word written/read has the following format.

- 26 -

U
L
B

U
L
B

U
L
B

U
L
B

U
L
B

U
L
B

U
L
B

U
L
B

U
L
B

U
L
B

U
L
B

U
L
B

U
L
B

U
L
B

U
L
B

U
L
B

0
0

1
3

1
4

2
9

3
0

3
5

Note that bits [30..35] are unused, which means the 64-word page table must be 64-
word aligned.

The 64-word alignment restriction saves an adder in the critical path to getting a
physical address to the memory, and causes no trouble, since the only values ITS ever
puts in this register are fixed offsets from the start of a job's variables (UPGCP and
UPGMP+100), and it's easy to align the start of a job's variables (since the job's
variables contain a UPT on some machines, and on some of these machines, the UPT
needs to be aligned).

All 256 entries in the user mode page table entry cache are invalidated any time the
user mode low segment base register is written.

Power-up reset sets ULB to 0. A software-generated I/O reset (caused by CONO APR,
200000) does not effect ULB.

DATAI PAG+7,E

7 0 7 4 47 0 7 4 47 0 7 4 47 0 7 4 47 0 7 4 47 0 7 4 47 0 7 4 47 0 7 4 47 0 7 4 47 0 7 4 47 0 7 4 47 0 7 4 47 0 7 4 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

DATAO PAG+7,E

7 0 7 5 47 0 7 5 47 0 7 5 47 0 7 5 47 0 7 5 47 0 7 5 47 0 7 5 47 0 7 5 47 0 7 5 47 0 7 5 47 0 7 5 47 0 7 5 47 0 7 5 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read/write the user mode high segment base register (the base register ITS normally
calls DBR2). The word written/read has the following format.

U
H
B

U
H
B

U
H
B

U
H
B

U
H
B

U
H
B

U
H
B

U
H
B

U
H
B

U
H
B

U
H
B

U
H
B

U
H
B

U
H
B

U
H
B

U
H
B

0
0

1
3

1
4

2
9

3
0

3
5

Note that bits [30..35] are unused, which means the 64-word page table must be 64-
word aligned.

- 27 -

The 64-word alignment restriction saves an adder in the critical path to getting a
physical address to the memory, and causes no trouble, since the only values ITS ever
puts in this register are fixed offsets from the start of a job's variables (UPGCP and
UPGMP+100), and it's easy to align the start of a job's variables (since the job's
variables contain a UPT on some machines, and on some of these machines, the UPT
needs to be aligned).

All 256 entries in the user mode page table entry cache are invalidated any time the
user mode high segment base register is written.

Power-up reset sets UHB to 0. A software-generated I/O reset (caused by CONO APR,
200000) does not effect UHB.

- 28 -

RTC
The RTC device, which is part of the BIO block, is a periodic 60 Hz interrupt, a free-
running timer that works in 60 Hz ticks, and a date/time clock with battery backup.

The free-running timer is a 36-bit register that increments at a 60 Hz rate if its value is
not 0. By convention if the timer contains 0 it means the timer is not valid; a side effect
of this definition is that the timer becomes invalid any time it overflows. By convention
the timer holds the date/time, encoded as a number of 60 Hz ticks since 01-Jan-2001,
00:00:00, in the local standard (not daylight) time zone, for use by ITS.

The date/time clock is a Dallas Semiconductor DS1337, accessed over a bit-banged
I2C bus. The DS1337 contains a date/time clock, with battery backup, that works in
HH:MM:SS DD:MM:YY format. The date/time clock is read by the ROM, which uses it
to initialize the free-running timer.

The RTC device generates the 60 Hz clock used by both the 60 Hz interrupt and by the
timer by dividing a 1.8432 MHz clock (the same clock that is used by the TTY device to
generate serial line bit-rate clocks) by 30720. A design that used the 60 Hz power line
as the time base was rejected because it would not allow battery operation.

CONI, RTC,E

7 1 0 2 47 1 0 2 47 1 0 2 47 1 0 2 47 1 0 2 47 1 0 2 47 1 0 2 47 1 0 2 47 1 0 2 47 1 0 2 47 1 0 2 47 1 0 2 47 1 0 2 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read the status of RTC into location E. The word read has the following format.

D D
O

C C
O

F I
E

I
R

I
A
I
A
I
A

0
0

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
5

D" The value that is on the SDA signal of the I2C bus, without regard for
which device (RTC, DS1337, or both) is actually driving.

DO" The value that RTC is driving onto the SDA signal of the I2C bus. The
RTCʼs driver is open-drain, so RTC drives the SDA signal to 0 when DO is
0, and does not drive the SDA signal when DO is 1.

C " The value that is on the SCK signal of the I2C bus, without regard for
which device (RTC, DS1337, or both) is actually driving.

- 29 -

CO" The value that RTC is driving onto the SCK signal of the I2C bus. The
RTCʼs driver is open-drain, so RTC drives the SCK signal to 0 when CO is
0, and does not drive the SCK signal when CO is 1.

F" The clock flag, set by the 60 Hz time base, and cleared by CONO RTC
with the CF bit set.

IE" The PI enable.

IR" The PI request, set if F is 1 and IE is 1, even if the RTC device is not
assigned to any PI level.

IA" The PI assignment.

Reset (which can be a power-up reset, or a software-generated I/O reset caused by a
CONO APR, 200000) sets DO to 1, CO to 1, F to 0, IE to 0, and IA to 0. This causes D
to be 1 and C to be 1 (nothing is driving the SDA and SCK signals, so they become 1
because of the I2C pull-up resistors) and IR to be 0 (since IE is 0). Because F is set
every 1/60th of a second, observing that F is set to 0 by reset requires effort.

CONO RTC,E

7 1 0 2 07 1 0 2 07 1 0 2 07 1 0 2 07 1 0 2 07 1 0 2 07 1 0 2 07 1 0 2 07 1 0 2 07 1 0 2 07 1 0 2 07 1 0 2 07 1 0 2 0 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Set up the RTC device from the effective conditions E as shown.

D
O

C
O

C
F

I
E

I
A
I
A
I
A

0
0

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
5

DO" The value that RTC should drive onto the SDA signal of the I2C bus. The
RTCʼs driver is open-drain, so RTC drives the SDA signal to 0 when DO is
0, and does not drive the SDA signal when DO is 1.

CO" The value that RTC should drive onto the SCK signal of the I2C bus. The
RTCʼs driver is open-drain, so RTC drives the SCK signal to 0 when CO is
0, and does not drive the SCK signal when CO is 1.

CF" The clear flag command; the flag is cleared by a CONO with CF set to 1.

IE" The PI enable.

- 30 -

IA" The PI assignment.

CONSZ RTC,E

7 1 0 3 07 1 0 3 07 1 0 3 07 1 0 3 07 1 0 3 07 1 0 3 07 1 0 3 07 1 0 3 07 1 0 3 07 1 0 3 07 1 0 3 07 1 0 3 07 1 0 3 0 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read the status of the RTC (as described in CONI RTC), mask it with the effective
address E (an immediate quantity), and skip if the result is zero.

CONSO RTC,E

7 1 0 3 47 1 0 3 47 1 0 3 47 1 0 3 47 1 0 3 47 1 0 3 47 1 0 3 47 1 0 3 47 1 0 3 47 1 0 3 47 1 0 3 47 1 0 3 47 1 0 3 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read the status of the RTC (as described in CONI RTC), mask it with the effective
address E (an immediate quantity), and skip if the result is non-zero.

DATAI RTC,E

7 1 0 0 47 1 0 0 47 1 0 0 47 1 0 0 47 1 0 0 47 1 0 0 47 1 0 0 47 1 0 0 47 1 0 0 47 1 0 0 47 1 0 0 47 1 0 0 47 1 0 0 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read the free-running timer into memory location E.

Power-up reset sets the free-running timer to 0. Software-generated I/O reset (caused
by CONO APR, 200000) does not reset the free-running timer; the date and time set by
the ROM persists through any software-generated I/O reset.

DATAO RTC,E

7 1 0 1 47 1 0 1 47 1 0 1 47 1 0 1 47 1 0 1 47 1 0 1 47 1 0 1 47 1 0 1 47 1 0 1 47 1 0 1 47 1 0 1 47 1 0 1 47 1 0 1 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Write memory location E into the free-running timer.

- 31 -

TTY
The TTY device, which is part of the BIO block, is a simple double-buffered full-duplex
2-wire UART intended for use as the console terminal.

The receiver and transmitter are hardwired to operate at 9600 bits/second (the 16x9600
Hz clock needed by the transmitter and receiver is generated by dividing a 1.8432 MHz
crystal clock by 12), with eight data bits, with one stop bit, and with no parity. The
configuration of the transmitter and receiver is hardwired, so bootstrap software can use
the TTY device in a busy-wait style without any initialization.

CONI TTY,E

7 2 0 2 47 2 0 2 47 2 0 2 47 2 0 2 47 2 0 2 47 2 0 2 47 2 0 2 47 2 0 2 47 2 0 2 47 2 0 2 47 2 0 2 47 2 0 2 47 2 0 2 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read the status of the TTY device into location E as shown.

T
B
E

T
I
E

T
I
R

R
B
F

R
I
E

R
I
R

I
A
I
A
I
A

0
0

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
5

TBE" The transmit buffer empty status, set if the transmit buffer register is not
holding a character. Writing a character into the transmit side (with a
DATAO TTY) clears this bit; the bit re-sets as soon as the character is
moved from the transmit buffer register into the transmit shift register.

TIE" The transmit PI enable.

TIR" The transmit PI request, set if the TBE and TIE bits are set, even if the
TTY device is not connected to any PI level (that is, if the IA field is 0).

RBF" The receive buffer full status, set if the receive buffer register is holding a
character. Reading a character from the receive side (with a DATAI TTY)
clears this bit; the bit re-sets as soon as the next character is moved from
the receive shift register into the receive buffer register.

RIE" The receive PI enable.

RIR" The receive PI request, set if the RBF and RIE bits are set, even if the
TTY device is not connected to any PI level (that is, if the IA field is 0).

- 32 -

IA" The transmit/receive PI assignment.

Reset (which can be a power-up reset, or a software-generated I/O reset caused by a
CONO APR, 200000) sets TBE to 1, TIE to 0, RBF to 0, RIE to 0, and IA to 0. This
forces TIR to 0 (because TIE is 0) and RIR to 0 (because RIE is 0).

CONO TTY,E

7 2 0 2 07 2 0 2 07 2 0 2 07 2 0 2 07 2 0 2 07 2 0 2 07 2 0 2 07 2 0 2 07 2 0 2 07 2 0 2 07 2 0 2 07 2 0 2 07 2 0 2 0 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Set up the TTY device from the effective conditions E as shown.

T
I
E

R
I
E

I
A
I
A
I
A

0
0

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
5

TIE" The transmit PI enable.

RIE" The receive PI enable.

IA" The transmit/receive PI assignment.

CONSZ TTY,E

7 2 0 3 07 2 0 3 07 2 0 3 07 2 0 3 07 2 0 3 07 2 0 3 07 2 0 3 07 2 0 3 07 2 0 3 07 2 0 3 07 2 0 3 07 2 0 3 07 2 0 3 0 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read the status of the TTY device (as described in CONI TTY), mask it with the
effective address E (an immediate quantity), and skip if the result is zero.

CONSO TTY,E

7 2 0 3 47 2 0 3 47 2 0 3 47 2 0 3 47 2 0 3 47 2 0 3 47 2 0 3 47 2 0 3 47 2 0 3 47 2 0 3 47 2 0 3 47 2 0 3 47 2 0 3 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read the status of the TTY device (as described in CONI TTY), mask it with the
effective address E (an immediate quantity), and skip if the result is non-zero.

DATAI TTY,E

- 33 -

7 2 0 0 47 2 0 0 47 2 0 0 47 2 0 0 47 2 0 0 47 2 0 0 47 2 0 0 47 2 0 0 47 2 0 0 47 2 0 0 47 2 0 0 47 2 0 0 47 2 0 0 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read the TTY receive buffer register into bits [28..35] of memory location E. Bits [00..27]
are unpredictable. Clear the RBF bit in the TTY status.

This instruction does not check for a possible soft error on location E before it reads the
TTY receive buffer register, so if there is a soft error data can be lost. This is not a
problem if E specifies an accumulator or a location in wired-down memory, which is
expected to always be the case.

DATAO TTY,E

7 2 0 1 47 2 0 1 47 2 0 1 47 2 0 1 47 2 0 1 47 2 0 1 47 2 0 1 47 2 0 1 47 2 0 1 47 2 0 1 47 2 0 1 47 2 0 1 47 2 0 1 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Write bits [28..35] of memory location E to the TTY transmit buffer register. Bits [00..27]
of memory location E are ignored. Clear the TBE bit in the TTY status. Restart the
transmitter if it is not running.

This definition of status bits and interrupt enables has been designed to work well with
ITS terminal service. Receive is initialized by a CONO TTY, RIE, which sets RIE. Any
time a character becomes available RBF becomes set. which immediately generates a
PI, and the PI routine does a DATAI TTY, which reads the character and clears RBF.
Transmit is initialized by the same CONO TTY, RIE, which clears TIE. Transmit is
started by a CONO TTY, TIE+RIE executed from the TTYST (signal that output is
available on a previously idle TTY) table, which immediately generates a PI. The
transmit side is continued by a DATAO TTY executed from the TTYDO (output one
character) table, and stopped by a CONO TTY, RIE, which clears TIE, executed from
the TTYDFF (tell TTY to stop interrupting) table.

- 34 -

DSK
The DSK device, which is part of the BIO block, provides an interface to a single string
of ATA-2 disks (one or two disks).

The DSK device always uses programmed I/O; this reduces performance on disks, but
allows a number of disk-like devices that implement a subset of the ATA-2 interface that
does not include DMA, like Compact Flash cards, to also be used (this means the ATA-2
DMARQ signal is ignored, and the ATA-2 DMACK signal is always driven false).

Nothing prevents a future version of DSK from implementing DMA on disks and disk-like
devices that support it, and there is lots of free space in the BIO FPGA. It is expected
that the DMA registers for DSK (D[03..05] = 100) would have D[03..05] = 101.

The DSK device always uses mode 0 (8-bit) and mode 2 (16-bit) PIO cycles, and
assumes that the disk never needs to delay a cycle, which means the IORDY signal can
be ignored. The DSK device does not support ancient ATA-2 disks, and assumes that
the disk supports true 16-bit accesses to its data register, which means the IOCS16
signal can be ignored.

The INTRQ signal is pulled down by a 10K resistor; this ensures that INTRQ is false
when the interrupt is “disabled'” by the IEN bit in the device control register (when the
ATA-2 specification talks about enabling and disabling interrupts it means enabling and
disabling the tri-state buffer driving the INTRQ signal).

CONI DSK,E

7 4 0 2 47 4 0 2 47 4 0 2 47 4 0 2 47 4 0 2 47 4 0 2 47 4 0 2 47 4 0 2 47 4 0 2 47 4 0 2 47 4 0 2 47 4 0 2 47 4 0 2 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read the status of the DSK device into location E as shown.

I
R
Q

I
E

I
R

I
A
I
A
I
A

0
0

2
9

3
0

3
1

3
2

3
3

3
5

IRQ" The raw ATA-2 interrupt request, set if the INTRQ signal on the ATA-2 bus
is true, even if the DSK device does not have the PI enabled (that is, if the
IE bit is 0) or is not connected to any PI level (that is, if the IA field is 0).

IE" The PI enable.

- 35 -

IR" The PI request, set if the IRQ bit is set and the IE bit is set, even if the
DSK device is not connected to any PI level (that is, if the IA field is 0).

IA" The PI assignment.

Reset (which can be a power-up reset, or a software-generated I/O reset caused by a
CONO APR, 200000) sets IE to 0, and IA to 0. This forces IR to 0 (because IE is 0) and
IRQ to 0 (because reset implies an ATA-2 reset, which causes the disk to tri-state the
INTRQ signal, which causes the INTRQ signal to get pulled false by the 10K resistor).

CONO DSK,E

7 4 0 2 07 4 0 2 07 4 0 2 07 4 0 2 07 4 0 2 07 4 0 2 07 4 0 2 07 4 0 2 07 4 0 2 07 4 0 2 07 4 0 2 07 4 0 2 07 4 0 2 0 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Set up the DSK device from the effective conditions E as shown.

I
E

I
A
I
A
I
A

0
0

2
9

3
0

3
1

3
2

3
3

3
5

IE" The PI enable.

IA" The PI assignment.

CONSZ DSK,E

7 4 0 3 07 4 0 3 07 4 0 3 07 4 0 3 07 4 0 3 07 4 0 3 07 4 0 3 07 4 0 3 07 4 0 3 07 4 0 3 07 4 0 3 07 4 0 3 07 4 0 3 0 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read the status of the DSK device (as described in CONI DSK), mask it with the
effective address E (an immediate quantity), and skip if the result is zero.

CONSO DSK,E

7 4 0 3 47 4 0 3 47 4 0 3 47 4 0 3 47 4 0 3 47 4 0 3 47 4 0 3 47 4 0 3 47 4 0 3 47 4 0 3 47 4 0 3 47 4 0 3 47 4 0 3 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read the status of the DSK device (as described in CONI DSK), mask it with the
effective address E (an immediate quantity), and skip if the result is non-zero.

- 36 -

DATAI DSK+R,E

7 4 0 0 4 + (R << 3)7 4 0 0 4 + (R << 3)7 4 0 0 4 + (R << 3)7 4 0 0 4 + (R << 3)7 4 0 0 4 + (R << 3)7 4 0 0 4 + (R << 3)7 4 0 0 4 + (R << 3)7 4 0 0 4 + (R << 3)7 4 0 0 4 + (R << 3)7 4 0 0 4 + (R << 3)7 4 0 0 4 + (R << 3)7 4 0 0 4 + (R << 3)7 4 0 0 4 + (R << 3) I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read the contents of the ATA-2 register specified by the R field into location E. Bits R
[07..09] supply A[02..00] to the ATA-2 bus, and bit R[06] specifies if the register is in the
command block (R[06] = 0) or the control block (R[06] = 1).

If the R field specifies the data register in the command block (R[06] = 0, R[07..09] = 0)
then the DSK device reads the ATA-2 register four times, using a 16-bit PIO mode 2
read cycle, assembles the read data into a 36-bit word, and writes the word into location
E. Each read of the ATA-2 register contributes 9 bits to the word (from ATA-2 D[08..00]),
with the first read contributing bits [00..08] to the word, and the last read contributing
bits [27..35] to the word.

If the R field specifies anything else then the interface reads the disk register once,
using an 8-bit PIO mode 0 read cycle, and writes the read data into bits [28..35] of
location E; bits [00..27] of location E are unpredictable.

This instruction does not check for a possible soft error on location E before it reads any
ATA-2 register; if the ATA-2 register read has a side effect and there is a soft error data
can be lost. This is not a problem if E specifies an accumulator or a location in wired-
down memory, which is expected to always be the case.

DATAO DSK+R,E

7 4 0 1 4 + (R << 3)7 4 0 1 4 + (R << 3)7 4 0 1 4 + (R << 3)7 4 0 1 4 + (R << 3)7 4 0 1 4 + (R << 3)7 4 0 1 4 + (R << 3)7 4 0 1 4 + (R << 3)7 4 0 1 4 + (R << 3)7 4 0 1 4 + (R << 3)7 4 0 1 4 + (R << 3)7 4 0 1 4 + (R << 3)7 4 0 1 4 + (R << 3)7 4 0 1 4 + (R << 3) I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Write the contents of location E into the ATA-2 register specified by the R field. Bits R
[07..09] supply A[02..00] to the ATA-2 bus, and bit R[06] specifies if the register is in the
command block (R[06] = 0) or the control block (R[06] = 1).

If the R field specifies the data register in the command block (R[06] = 0, R[07..09] = 0)
then the DSK device reads a 36-bit word from location E, disassembles the word into
four 9-bit chunks, and writes each chunk to the ATA-2 bus using four 16-bit PIO mode 2
write cycles. Each 9-bit chunk supplies D[08..00] to the ATA-2 bus; D[15..09] are forced
to 0. The first chunk comes from bits [00..08] of the word, and the fourth chunk comes
from bits [27..35] of the word.

- 37 -

If the R field specifies anything else the DSK device reads a 36-bit word form location E,
and writes bits [28..35] of the word to the ATA-2 bus using an 8-bit PIO mode 0 write
cycle. The word supplied D[07..00] to the ATA-2 bus; D[15..08] are forced to 0.

- 38 -

ETH
The ETH device, which is part of the BIO block, provides an interface to a WIZnet
WIZ830MJ 10/100-base-T embedded ethernet module.

The WIZ8300MJ module was selected because the WIZnet W5300 controller upon
which it is based can be run in a mode where it is little more than an ethernet chip with
128KB of shared buffering (which can be used by operating systems) or in a mode
where it contains a complete, albeit fairly simple, TCP/UDP/ICMP/IP stack (which can
be used by a future version of the ROM that implements network booting and/or by a
stand-alone program that allows network updates of the disk).

The ETH device runs the WIZ830MJ in indirect register mode and with an 8-bit data
bus; the BIT16EN pin is connected to ground, the A[09..03] pins are connected to
ground, and the D[15..08] pins are floating.

CONI ETH,E

7 6 0 2 47 6 0 2 47 6 0 2 47 6 0 2 47 6 0 2 47 6 0 2 47 6 0 2 47 6 0 2 47 6 0 2 47 6 0 2 47 6 0 2 47 6 0 2 47 6 0 2 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read the status of the ETH device into location E as shown.

I
N
T

I
E

I
R

I
A
I
A
I
A

0
0

2
9

3
0

3
1

3
2

3
3

3
5

INT" The raw interrupt request, set if the interrupt request pin (/INT) pin of the
WIZ830MJ is true (low), even if the ETH device does not have the PI
enabled (that is, if the IE bit is 0) or is not connected to any PI level (that
is, if the IA field is 0).

IE" The PI enable.

IR" The PI request, set if the INT bit is set and the IE bit is set, even if the ETH
device is not connected to any PI level (that is, if the IA field is 0).

IA" The PI assignment.

Reset (which can be a power-up reset, or a software-generated I/O reset caused by a
CONO APR, 200000) sets IE to 0, sets IA to 0, resets the WIZ830MJ. Setting IE to 0
causes IR to be set to 0, and resetting the WIZ830MJ causes INT to be set to 0.

- 39 -

CONO ETH,E

7 6 0 2 07 6 0 2 07 6 0 2 07 6 0 2 07 6 0 2 07 6 0 2 07 6 0 2 07 6 0 2 07 6 0 2 07 6 0 2 07 6 0 2 07 6 0 2 07 6 0 2 0 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Set up the ETH device from the effective conditions E as shown.

I
E

I
A
I
A
I
A

0
0

2
9

3
0

3
1

3
2

3
3

3
5

IE" The PI enable.

IA" The PI assignment.

CONSZ ETH,E

7 6 0 3 07 6 0 3 07 6 0 3 07 6 0 3 07 6 0 3 07 6 0 3 07 6 0 3 07 6 0 3 07 6 0 3 07 6 0 3 07 6 0 3 07 6 0 3 07 6 0 3 0 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read the status of the ETH device (as described in CONI ETH), mask it with the
effective address E (an immediate quantity), and skip if the result is zero.

CONSO ETH,E

7 6 0 3 47 6 0 3 47 6 0 3 47 6 0 3 47 6 0 3 47 6 0 3 47 6 0 3 47 6 0 3 47 6 0 3 47 6 0 3 47 6 0 3 47 6 0 3 47 6 0 3 4 I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read the status of the ETH device (as described in CONI ETH), mask it with the
effective address E (an immediate quantity), and skip if the result is non-zero.

DATAI ETH+R,E

7 6 0 0 4 + (R << 3)7 6 0 0 4 + (R << 3)7 6 0 0 4 + (R << 3)7 6 0 0 4 + (R << 3)7 6 0 0 4 + (R << 3)7 6 0 0 4 + (R << 3)7 6 0 0 4 + (R << 3)7 6 0 0 4 + (R << 3)7 6 0 0 4 + (R << 3)7 6 0 0 4 + (R << 3)7 6 0 0 4 + (R << 3)7 6 0 0 4 + (R << 3)7 6 0 0 4 + (R << 3) I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Read the contents of the WIZ830MJ register specified by the R field into location E.

- 40 -

If R[06]=0 then a 16-bit value is read, as two 8-bit values, from the WIZ830MJ and
written into bits [00..15] of location E, and bits [16..35] of location E are set to 0. If R[06]
=1 then two 16-bit values are read, as four 8-bit values, from the WIZ830MJ and written
into bits [00..15] (the first 16-bit value) and bits [16..31] (the second 16-bit value) of
location E, and bits [32..35] of location E are set to 0.

If R[07]=0 then the 16-bit values are read from the WIZ830MJ in big-endian order (the
most significant 8-bit value is read first, and the least significant 8-bit read is read
second). If R[07]=0 then the 16-bit values are read from the WIZ830MJ in big-endian
order (the most significant 8-bit value is read first, and the least significant 8-bit read is
read second). Big-endian order is used when reading bytes and when reading 16-bit
words in ARPANET order. Little-endian order is used when read 16-bit words in
CHAOSNET order.

R[08..09] supplies A[02..01] to the WIZ830MJ. A[00] to the WIZ830MJ is sequenced
automatically based on R[06..07].

This instruction does not check for a possible soft error on location E before it reads any
WIZ830MJ register; if the WIZ830MJ register read has side effects and there is a soft
error data can be lost. This is not a problem if E specifies an accumulator or a location
in wired-down memory, which is expected to always be the case.

DATAO ETH+R,E

7 6 0 1 4 + (R << 3)7 6 0 1 4 + (R << 3)7 6 0 1 4 + (R << 3)7 6 0 1 4 + (R << 3)7 6 0 1 4 + (R << 3)7 6 0 1 4 + (R << 3)7 6 0 1 4 + (R << 3)7 6 0 1 4 + (R << 3)7 6 0 1 4 + (R << 3)7 6 0 1 4 + (R << 3)7 6 0 1 4 + (R << 3)7 6 0 1 4 + (R << 3)7 6 0 1 4 + (R << 3) I XXXX YYYYYYYYYYYYYYYYYY

0
0

1
2

1
3

1
4

1
7

1
8

3
5

Write the contents of location E into the WIZ830MJ register specified by the R field.

If R[06]=0 then the 16-bit value in bits [00..15] of location E is written, as two 8-bit
values, into the WIZ830MJ. If R[06]=0 then two 16-bit values, the first one in bits
[00..15] of location E, and the second one in bits [16..31] of location E, is written, as four
8-bit values, into the WIZ830MJ.

If R[07]=0 then the 16-bit values are written into the WIZ830MJ in big-endian order (the
most significant 8-bit value is written first, and the least significant 8-bit value is written
second). If R[07]=1 then the 16-bit values are written into the WIZ830MJ in little-endian
order (the least significant 8-bit value is written first, and the most significant 8-bit value
is written second). Big-endian order is used when writing bytes and when writing 16-bit
words in ARPANET order. Little-endian order is used when writing 16-bit words in
CHAOSNET order.

R[08..09] supplies A[02..01] to the WIZ830MJ. A[00] to the WIZ830MJ is sequenced
automatically based on R[06..07].

- 41 -

ROM
The PDP-10/X does not have a tradition switches-and-lights front panel, nor does it
have a second small (front end) processor that implements some complicated console
interface. Instead, it has a 1KW ROM and some simple logic in PAG that allows the
initial instructions executed by APR to come from the ROM, and implements its
bootstrap and console functions (mainly a loader for system images) as a PDP-10
program.

Implementing bootstrap and console functions as a PDP-10 program is more difficult
that it first appears. When ITS is read from the disk it is loaded into several disjoint
regions of the lowest 256KW of memory; ITS at the low end, NSALV in the middle, and
DDT at the high end. It is difficult to find a place in the lowest 256KW to hide the
bootstrap and console program while it is executing. The PDP-10/X solves this problem
with some simple logic in PAG that allows the console program to run out of the highest
256KW of memory, but be able to load ITS into the lowest 256KW of memory; there are
no conflicts between the bootstrap and console program and any program that would
normally run with paging disabled.

When PAG is reset PE is 0, RE is 1, and HM is 1. Since PE is 0 paging is disabled, but
since RE is 1 and HM is 1 addresses in the range 000000 to 377777 reference the
lowest 128KW of the highest 256KW of memory, and addresses in the range 400000 to
777777 reference 128 copies of the 1KW ROM. When APR is reset FL is 0 and PC is
400000, so the first instruction executed comes from the first word of the ROM.

The ROM is written so that it runs at addresses 000000 to 001777. The first few
instructions of the ROM, which are executed out-of-place, copy the ROM image from
the high 128KW of the address space to the low 128KW of the address space, then
jump into the low 128KW of the address space. Once control is in the low 128KW of the
address space the ROM is no longer needed, so RE is set to 0.

	 LOC 	 0
	 HRLZI	 A,400020	 	 ; COPY 400020-401777
	 HRRI	 A,20	 	 	 ; INTO 000020-001777
	 BLT	 A,1777
	 JRST	 L20

	 LOC	 20
L20:	 CONO	 PAG+0,HM	 	 ; SET RE=0, TURN OFF ROM

The ROM command language can be very simple, because its only function is to load
standalone programs into the lowest 256KW of memory and jump to them. There are
commands to read and write device registers and/or locations in the lowest 256KW of
memory, but these are intended to be used only in desperation; it is expected that
serious debugging will be done using a standalone version of DDT, loaded into memory
by the ROM with the program being debugged.

- 42 -

The ROM commands are as follows.

B [/N:v][/P:dpn] [bpn]" Boot. Load the contents of the boot partition specified by
“bpn”, which defaults to the first boot partition in the diskʼs
partition table, into the low 256KW of memory, and jump to
the starting address of the boot partition.

" The /N option, if present, specifies the boot flags; if there is
no /N option then the boot flags are 0.

" The /P option, if present, specifies the name of the
associated disk partition; if there is no /P option then the
name of the associated disk partition defaults to the name of
the boot partition.

D[/C][/D][/N:v] a d" Deposit.

E[/C][/D][/N:v] a" Examine.

I" Initialize the I/O system.

L bpn" Load boot partition.

R" Read a binary file from the terminal and load it into the
specified locations in the low 256KW of memory. The file is
essentially a DECSAV file (in that load data consists of
blocks beginning by a “-n,,a-1” word) but it ends with a single
JRST word, rather than with two JRST words.

S/[/P:dpn][/N:v] [sa]" Start.

Z" Zero memory.

The ROM sends jumps to the standalone program by copying a trampoline program into
the accumulators (a CONO PAG+0,0 to set HM=0, and a JRST to the start address of
the standalone program) and then jumping into the accumulators. When the first
instruction of the standalone program some useful information is in accumulators 1-4.

1" The boot flags. Specified by the /N option on the B or S command, or 0 if there
was no /N option on the B or S command.

2" Unused. Always 0.

3" The base of the associated disk partition, in cylinders, or 0 if the ROM was
unable to find the associated disk partition.

- 43 -

4" The size of the associated disk partition, in cylinders, or 0 if the ROM was unable
to find the associated disk partition.

The starting address of a boot partition containing ITS (or, to be more precise, a copy of
ITS, NSALV, and DDT) points to the label “BEG” in ITS. The following code is located at
the label “BEG” in ITS.

BEG:	 MOVEM	 A,BINFO+0	 	 ; SAVE USEFUL INFO
	 MOVEM	 B,BINFO+1
	 MOVEM	 C,BINFO+2
	 MOVEM	 D,BINFO+3

	 TRNN	 D,1	 	 	 ; [35]=1 => STOP BOOT AT DDT
	 JRST	 BEG1
	 MOVEI	 T,[0]	 	 	 ; SET EMPTY MACRO COMMAND STRING
	 HRLI	 T,440700
	 MOVEM	 T,MACCR
	 MOVEI	 T,BEG1		 	 ; SET <ALT>P ADDRESS
	 MOVEM	 T,@DDT-6
	 JRST	 DDT

BEG1:	 MOVE	 T,BINFO+3	 	 ; CHECK SIZE OF DISK
	 CAIE	 T,NCYLS+XCYLS
	 BUG	 AWFUL,[DISK IS WRONG SIZE]

	 SKIPN	 SALV	 	 	 ; CHECK IF NSALV IS PESENT
	 BUG	 AWFUL,[NO NSALV]
	 JSR	 SALV+1		 	 ; NSALV, NO QUESTIONS

BEG2:	 ...

By default the system will run NSALV in no-questions mode and start up the system. If
the system is booted with bit [35] set to 1 the system will enter DDT immediately after it
boots, and if a “$P” command is given in DDT, the system will proceed to run NSALV in
no-questions mode and start up the system. If, for some reason, one wants to bring up
the system without running NSALV then the system should be booted with bit [35] set to
1, and then started at label “BEG2” explicitly from DDT.

- 44 -

DISK LAYOUT
PDP-10 software is often aware of the physical geometry of the disk. The DSK uses
ATA-2 disks run in LBA (logical block address) mode, so that the actual physical
geometry of the disk is hidden, and uses standardized artificial geometry to satisfy any
PDP-10 software that actually cares.

The DSK packs 64 PDP-10 words into each 512-byte disk block. This means that the
natural “sector” of the DSK is 64 words long, which is half the size of the natural sector
on all DEC disks (128 words, or 576 bytes). This causes no problems for ITS, which
always works in 1K-word blocks, but might cause trouble for software that works in 128-
word blocks and assumes that the size of a block and the size of a sector are the same.

Each “track” of the DSK is assumed to contain 64 sectors. Each track, therefore,
contains 64*64 = 4096 words. This is the same track size as the DEC RMxx disks (the
RM02, RM03, RM05, and RM80 disks all used 128-word sectors and had 32 sectors
per track).

Each “cylinder” of the DSK is assumed to contain 16 tracks. Each cylinder, therefore,
contains 4096*16 = 65536 words. This is a slightly larger cylinder size than the RM80
(which had 14 tracks per cylinder) and a slightly smaller cylinder size than the RM05
(which had 19 tracks per cylinder).

The fact that both the sectors/track and tracks/cylinder are powers of two means that a
cylinder can be divided exactly into 1K-word ITS blocks; each cylinder contains 1024
sectors, and each 1K-word ITS block is 16 sectors, so there are 64 ITS blocks per
cylinder. On some DEC disks (this is not true, and space is wasted.

Modern ATA-2 disks are much larger than any PDP-10 disk. To allow a single modern
disk to serve as multiple smaller PDP-10 disks each physical disk is partitioned into one
or more smaller logical disks, with each logical disk assigned some number of (65536
word) cylinders. The locations and sizes of the partitions is kept in a partition table
located in the very first sector of the physical disk. In addition to holding the locations
and sizes of the logical disk partitions, the partition table holds the locations and sizes of
256K-word boot images and space on the physical disk that is not allocated.

The partition table has the following format.

- 45 -

4 4 6 3 5 34 4 6 3 5 34 4 6 3 5 34 4 6 3 5 34 4 6 3 5 34 4 6 3 5 34 4 6 3 5 34 4 6 3 5 34 4 6 3 5 34 4 6 3 5 34 4 6 3 5 34 4 6 3 5 34 4 6 3 5 34 4 6 3 5 34 4 6 3 5 34 4 6 3 5 34 4 6 3 5 34 4 6 3 5 3 000000000000000000

DISK SIZE (CYLINDERS)

000000000000000000000000000000000000

TYPE CODETYPE CODETYPE CODETYPE CODETYPE CODETYPE CODETYPE CODETYPE CODETYPE CODETYPE CODETYPE CODETYPE CODETYPE CODETYPE CODETYPE CODETYPE CODETYPE CODETYPE CODE

SIZE (CYLINDERS)

VARIES BY TYPE CODE

VARIES BY TYPE CODE

CHECKSUM

0
0

1
7

1
8

3
5

The partition table begins with a three word header. Word 0 of the header contains an
identifying tag (the letters DSK in SIXBIT) in its left half, and a partition table version
number (currently 0) in its right half. Word 1 of the header contains the size of the disk,
in (65536 word) cylinders. Word 2 of the header is unused in a version 0 partition table,
and is always 0.

Immediately following the three-word header are fifteen four-word entries. The right half
of word 0 of each entry is always a type code. Word 1 of each entry is always the size of
the piece of the disk described by the entry, in (65536 word) cylinders.

- 46 -

The first entry is always a “partition table” entry (reserving the cylinder whose first sector
contains the partition table). Following the partition table are any number of “free space”
entries, “boot partition” entries, and “disk partition” entries. Following those entries are
enough “unused” entries to fill up the table. The partition table entries must describe the
entire disk, including any free space at the end.

The partition table ends with word containing a checksum of all of the previous words in
the partition table. The SBLK algorithm is used. The following code fragment computes
the checksum of words BUF+0 to BUF+62, and writes the result into word BUF+63.

WRC: MOVE A,[-63.,,BUF]
 MOVEI B,0
WRC1: ROT B,1
 ADD B,(A)
 AOBJN A,WRC1
 MOVEM B,(A)
 POPJ P,

Unused entries, with a type of 0, mark entries in the partition table that are not used for
something else. They are only allowed to appear at the end of the partition table, after
the last entry that reserves any space on the disk.

000000000000000000

000000000000000000000000000000000000

0
0

1
7

1
8

3
5

A partition table entry, with a type of 1, describes the cylinder that holds the partition
table in its very first sector. The size is always 1.

- 47 -

111111111111111111

111111111111111111111111111111111111

0
0

1
7

1
8

3
5

An empty space entry, with a type of 2, describes cylinders that are not currently
allocated.

222222222222222222

SIZE (CYLINDERS)

0
0

1
7

1
8

3
5

A PDP-10 boot partition entry, with a type of 3, describes cylinders that contain a boot
image. The size is always 4, since a bootstrap image is always 256KW in length (it
holds the entire contents of the lowest 256K words of memory). The name should be
restricted to the alpha-numeric subset of the SIXBIT character set (0-9, A-Z), since
various command parsers cannot deal with characters outside this range (without this
kind of restriction, a command like “B/P:N/N:3” is ambiguous).

- 48 -

333333333333333333

444444444444444444444444444444444444

NAME (SIXBIT)

START ADDRESSSTART ADDRESSSTART ADDRESSSTART ADDRESSSTART ADDRESSSTART ADDRESSSTART ADDRESSSTART ADDRESSSTART ADDRESSSTART ADDRESSSTART ADDRESSSTART ADDRESSSTART ADDRESSSTART ADDRESSSTART ADDRESSSTART ADDRESSSTART ADDRESSSTART ADDRESS

0
0

1
7

1
8

3
5

A PDP-10 disk partition entry, with a type of 4, describes cylinders that contain a disk
image. Once again, the name should be restricted to the alpha-numeric subset of the
SIXBIT character set (0-9, A-Z).

444444444444444444

SIZE (CYLINDERS)

NAME (SIXBIT)

0
0

1
7

1
8

3
5

- 49 -

OPCODES
The APR block implements the user mode instruction set of the KA10, including KA10-
style double precision floating point.

000-077: LUUOs and MUUOs
xx0 xx1 xx2 xx3 xx4 xx5 xx6 xx7

00x MUUO LUUO LUUO LUUO LUUO LUUO LUUO LUUO

01x LUUO LUUO LUUO LUUO LUUO LUUO LUUO LUUO

02x LUUO LUUO LUUO LUUO LUUO LUUO LUUO LUUO

03x LUUO LUUO LUUO LUUO LUUO LUUO LUUO LUUO

04x MUUO MUUO MUUO MUUO MUUO MUUO MUUO MUUO

05x MUUO MUUO MUUO MUUO MUUO MUUO MUUO MUUO

06x MUUO MUUO MUUO MUUO MUUO MUUO MUUO MUUO

07x MUUO MUUO MUUO MUUO MUUO MUUO MUUO MUUO

100-177: Byte Operations and Floating Point Operations
xx0 xx1 xx2 xx3 xx4 xx5 xx6 xx7

10x MUUO MUUO MUUO
(GFAD)

MUUO
(GFSB)

MUUO
(JSYS)

MUUO
(ADJSP)

MUUO
(GFMP)

MUUO
(GFDV)

11x MUUO
(DFAD)

MUUO
(DFSB)

MUUO
(DFMP)

MUUO
(DFDV)

MUUO
(DADD)

MUUO
(DSUB)

MUUO
(DMUL)

MUUO
(DDIV)

12x MUUO
(DMOVE)

MUUO
(DMOVN)

MUUO
(FIX)

MUUO
(EXTEND)

MUUO
(DMOVEM)

MUUO
(DMOVNM)

MUUO
(FIXR)

MUUO
(FLTR)

13x UFA DFN FSC IBP ILDB LDB IDPB DPB

14x FAD FADL FADM FADB FADR FADRI FADRM FADRB

15x FSB FSBL FSBM FSBB FSBR FSBRI FSBRM FSBRB

16x FMP FMPL FMPM FMPB FMPR FMPRI FMPRM FMPRB

17x FDV FDVL FDVM FDVB FDVR FDVRI FDVRM FDVRB

- 50 -

200-277: Moves and Integer Arithmetic Operations
xx0 xx1 xx2 xx3 xx4 xx5 xx6 xx7

20x MOVE MOVEI MOVEM MOVES MOVS MOVSI MOVSM MOVSS

21x MOVN MOVNI MOVNM MOVNS MOVM MOVMI MOVMM MOVMS

22x IMUL IMULI IMULM IMULB MUL MULI MULM MULB

23x IDIV IDIVI IDIVM IDIVB DIV DIVI DIVM DIVB

24x ASH ROT LSH JFFO ASHC ROTC LSHC MUUO

25x EXCH BLT AOBJP AOBJN JRST JFCL XCT MUUO
(MAP)

26x PUSHJ PUSH POP POPJ JSR JSP JSA JRA

27x ADD ADDI ADDM ADDB SUB SUBI SUBM SUBB

300-377: Compares, Skips, and Jumps
xx0 xx1 xx2 xx3 xx4 xx5 xx6 xx7

30x CAI CAIL CAIE CAILE CAIA CAIGE CAIN CAIG

31x CAM CAML CAME CAMLE CAMA CAMGE CAMN CAMG

32x JUMP JUMPL JUMPE JUMPLE JUMPA JUMPGE JUMPN JUMPG

33x SKIP SKIPL SKIPE SKIPLE SKIPA SKIPGE SKIPN SKIPG

34x AOJ AOJL AOJE AOJLE AOJA AOJGE AOJN AOJG

35x AOS AOSL AOSE AOSLE AOSA AOSGE AOSN AOSG

36x SOJ SOJL SOJE SOJLE SOJA SOJGE SOJN SOJG

37x SOS SOSL SOSE SOSLE SOSA SOSGE SOSN SOSG

- 51 -

400-477: Boolean Operations
xx0 xx1 xx2 xx3 xx4 xx5 xx6 xx7

40x SETZ SETZI SETZM SETZB AND ANDI ANDM ANDB

41x ANDCA ANDCAI ANDCAM ANDCAB SETM SETMI SETMM SETMB

42x ANDCM ANDCMI ANDCMM ANDCMB SETA SETAI SETAM SETAB

43x XOR XORI XORM XORB IOR IORI IORM IORB

44x ANDCB ANDCBI ANDCBM ANDCBB EQV EQVI EQVM EQVB

45x SETCA SETCAI SETCAM SETCAB ORCA ORCAI ORCAM ORCAB

46x SETCM SETCMI SETCMM SETCMB ORCM ORCMI ORCMM ORCMB

47x ORCB ORCBI ORCBM ORCBB SETO SETOI SETOM SETOB

500-577: Halfword Operations
57x xx1 xx2 xx3 xx4 xx5 xx6 xx7

50x HLL HLLI HLLM HLLS HRL HRLI HRLM HRLS

51x HLLZ HLLZI HLLZM HLLZS HRLZ HRLZI HRLZM HRLZS

52x HLLO HLLOI HLLOM HLLOS HRLO HRLOI HRLOM HRLOS

53x HLLE HLLEI HLLEM HLLES HRLE HRLEI HRLEM HRLES

54x HRR HRRI HRRM HRRS HLR HLRI HLRM HLRS

55x HRRZ HRRZI HRRZM HRRZS HLRZ HLRZI HLRZM HLRZS

56x HRRO HRROI HRROM HRROS HLRO HLROI HLROM HLROS

57x HRRE HRREI HRREM HRRES HLRE HLREI HLREM HLRES

- 52 -

600-677: Bit Test Operations
xx0 xx1 xx2 xx3 xx4 xx5 xx6 xx7

60x TRN TLN TRNE TLNE TRNA TLNA TRNN TLNN

61x TDN TSN TDNE TSNE TDNA TSNA TDNN TSNN

62x TRZ TLZ TRZE TLZE TRZA TLZA TRZN TLZN

63x TDZ TSZ TDZE TSZE TDZA TSZA TDZN TSZN

64x TRC TLC TRCE TLCE TRCA TLCA TRCN TLCN

65x TDC TSC TDCE TSCE TDCA TSCA TDCN TSCN

66x TRO TLO TROE TLOE TROA TLOA TRON TLON

67x TDO TSO TDOE TSOE TDOA TSOA TDON TSON

700-777: I/O Operations
xx0 xx1 xx2 xx3 xx4 xx5 xx6 xx7

70x IO-APR IO-APR IO-APR IO-APR IO-APR IO-APR IO-APR IO-APR

71x IO-RTC IO-RTC IO-RTC IO-RTC IO-RTC IO-RTC IO-RTC IO-RTC

72x IO-TTY IO-TTY IO-TTY IO-TTY IO-TTY IO-TTY IO-TTY IO-TTY

73x IO IO IO IO IO IO IO IO

74x IO-DSK IO-DSK IO-DSK IO-DSK IO-DSK IO-DSK IO-DSK IO-DSK

75x IO IO IO IO IO IO IO IO

76x IO IO IO IO IO IO IO IO

77x IO IO IO IO IO IO IO IO

- 53 -

CHANGE HISTORY

12-Jan-2008" Initial version. Based on the text from the LaTeX version, but
considerably reworked to include all of the thinking about how the APR
device should work, how traps and errors should work, and so on.
None of the hardware that has been designed so far conforms to this
specification, although itʼs not wrong by much.

30-Jan-2008" I finally figured out the right way for the address mapping while the
ROM is running to work (and I got to use the word “moby” in one of the
canonical ways). Major changes to the section on PAG, and the section
that describes how the ROM works.

02-Apr-2008" Minor revisions, mainly around the implementation of floating point,
including KA-style double precision. Some reformatting of the opcode
table to make it more readable.

21-May-2008" Changed the way the APR interrupts for bus and paging errors get
generated. In the old design there were flags for bus error and paging
error. In the new design there are flags for soft error and hard error,
and a soft error is sometimes turned into a hard error. This works better
because a soft error generated in a PI routine will get transformed into
a hard error (and get into DDT) rather than halting.

01-Jun-2008" Changed the RTC device to include the 36-bit free-running timer.

08-Jun-2008" Changed the RTC device to so that the 36-bit free-running timer is
reset by the power-on reset, not the I/O reset. This allows the ROM to
read the date/time clock once, rather than having to teach ITS how to
read it after every I/O reset.

23-Jun-2008" Changed the way APR interrupts work again, this time to make it easy
to context switch the trap enables and (possibly) ask for a fake soft
error (needed by code that uses XCTRI) with a single CONO.

14-Jul-2008" Changed all of the ASCII art for instructions and registers to use tables
in a clever way. There are still some ugly page breaks, but overall the
idea of using tables with no edge lines in some cases works.

17-Jul-2008" Eliminated previous mode. XCTR and XCTRI always redirect into user
mode. This is what ITS really wanted. Removed a bunch of JRSTF
instructions from ITS whose only purpose was to force PM=1.

27-Sep-2009" Switched to the DS1337 real-time clock. The DS1337 does not have
the DS1338ʻs 56 bytes of non-volatile memory, but does come in a

- 54 -

wider array of packaging options, including an 8-bit DIP option that is
well suited to being used on a prototype.

20-Mar-2011" Added a new section to describe the ETH interface, including details of
how the 16-bit and 32-bit packing and unpacking works.

- 55 -

